Metamath Proof Explorer


Theorem resfunexgALT

Description: Alternate proof of resfunexg , shorter but requiring ax-pow and ax-un . (Contributed by NM, 7-Apr-1995) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion resfunexgALT FunABCABV

Proof

Step Hyp Ref Expression
1 dmresexg BCdomABV
2 1 adantl FunABCdomABV
3 df-ima AB=ranAB
4 funimaexg FunABCABV
5 3 4 eqeltrrid FunABCranABV
6 2 5 jca FunABCdomABVranABV
7 xpexg domABVranABVdomAB×ranABV
8 relres RelAB
9 relssdmrn RelABABdomAB×ranAB
10 8 9 ax-mp ABdomAB×ranAB
11 ssexg ABdomAB×ranABdomAB×ranABVABV
12 10 11 mpan domAB×ranABVABV
13 6 7 12 3syl FunABCABV