Step |
Hyp |
Ref |
Expression |
1 |
|
dmresexg |
⊢ ( 𝐵 ∈ 𝐶 → dom ( 𝐴 ↾ 𝐵 ) ∈ V ) |
2 |
1
|
adantl |
⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → dom ( 𝐴 ↾ 𝐵 ) ∈ V ) |
3 |
|
df-ima |
⊢ ( 𝐴 “ 𝐵 ) = ran ( 𝐴 ↾ 𝐵 ) |
4 |
|
funimaexg |
⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 “ 𝐵 ) ∈ V ) |
5 |
3 4
|
eqeltrrid |
⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ran ( 𝐴 ↾ 𝐵 ) ∈ V ) |
6 |
2 5
|
jca |
⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( dom ( 𝐴 ↾ 𝐵 ) ∈ V ∧ ran ( 𝐴 ↾ 𝐵 ) ∈ V ) ) |
7 |
|
xpexg |
⊢ ( ( dom ( 𝐴 ↾ 𝐵 ) ∈ V ∧ ran ( 𝐴 ↾ 𝐵 ) ∈ V ) → ( dom ( 𝐴 ↾ 𝐵 ) × ran ( 𝐴 ↾ 𝐵 ) ) ∈ V ) |
8 |
|
relres |
⊢ Rel ( 𝐴 ↾ 𝐵 ) |
9 |
|
relssdmrn |
⊢ ( Rel ( 𝐴 ↾ 𝐵 ) → ( 𝐴 ↾ 𝐵 ) ⊆ ( dom ( 𝐴 ↾ 𝐵 ) × ran ( 𝐴 ↾ 𝐵 ) ) ) |
10 |
8 9
|
ax-mp |
⊢ ( 𝐴 ↾ 𝐵 ) ⊆ ( dom ( 𝐴 ↾ 𝐵 ) × ran ( 𝐴 ↾ 𝐵 ) ) |
11 |
|
ssexg |
⊢ ( ( ( 𝐴 ↾ 𝐵 ) ⊆ ( dom ( 𝐴 ↾ 𝐵 ) × ran ( 𝐴 ↾ 𝐵 ) ) ∧ ( dom ( 𝐴 ↾ 𝐵 ) × ran ( 𝐴 ↾ 𝐵 ) ) ∈ V ) → ( 𝐴 ↾ 𝐵 ) ∈ V ) |
12 |
10 11
|
mpan |
⊢ ( ( dom ( 𝐴 ↾ 𝐵 ) × ran ( 𝐴 ↾ 𝐵 ) ) ∈ V → ( 𝐴 ↾ 𝐵 ) ∈ V ) |
13 |
6 7 12
|
3syl |
⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ↾ 𝐵 ) ∈ V ) |