Metamath Proof Explorer


Theorem resfunexgALT

Description: Alternate proof of resfunexg , shorter but requiring ax-pow and ax-un . (Contributed by NM, 7-Apr-1995) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion resfunexgALT ( ( Fun 𝐴𝐵𝐶 ) → ( 𝐴𝐵 ) ∈ V )

Proof

Step Hyp Ref Expression
1 dmresexg ( 𝐵𝐶 → dom ( 𝐴𝐵 ) ∈ V )
2 1 adantl ( ( Fun 𝐴𝐵𝐶 ) → dom ( 𝐴𝐵 ) ∈ V )
3 df-ima ( 𝐴𝐵 ) = ran ( 𝐴𝐵 )
4 funimaexg ( ( Fun 𝐴𝐵𝐶 ) → ( 𝐴𝐵 ) ∈ V )
5 3 4 eqeltrrid ( ( Fun 𝐴𝐵𝐶 ) → ran ( 𝐴𝐵 ) ∈ V )
6 2 5 jca ( ( Fun 𝐴𝐵𝐶 ) → ( dom ( 𝐴𝐵 ) ∈ V ∧ ran ( 𝐴𝐵 ) ∈ V ) )
7 xpexg ( ( dom ( 𝐴𝐵 ) ∈ V ∧ ran ( 𝐴𝐵 ) ∈ V ) → ( dom ( 𝐴𝐵 ) × ran ( 𝐴𝐵 ) ) ∈ V )
8 relres Rel ( 𝐴𝐵 )
9 relssdmrn ( Rel ( 𝐴𝐵 ) → ( 𝐴𝐵 ) ⊆ ( dom ( 𝐴𝐵 ) × ran ( 𝐴𝐵 ) ) )
10 8 9 ax-mp ( 𝐴𝐵 ) ⊆ ( dom ( 𝐴𝐵 ) × ran ( 𝐴𝐵 ) )
11 ssexg ( ( ( 𝐴𝐵 ) ⊆ ( dom ( 𝐴𝐵 ) × ran ( 𝐴𝐵 ) ) ∧ ( dom ( 𝐴𝐵 ) × ran ( 𝐴𝐵 ) ) ∈ V ) → ( 𝐴𝐵 ) ∈ V )
12 10 11 mpan ( ( dom ( 𝐴𝐵 ) × ran ( 𝐴𝐵 ) ) ∈ V → ( 𝐴𝐵 ) ∈ V )
13 6 7 12 3syl ( ( Fun 𝐴𝐵𝐶 ) → ( 𝐴𝐵 ) ∈ V )