| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dmresexg | 
							⊢ ( 𝐵  ∈  𝐶  →  dom  ( 𝐴  ↾  𝐵 )  ∈  V )  | 
						
						
							| 2 | 
							
								1
							 | 
							adantl | 
							⊢ ( ( Fun  𝐴  ∧  𝐵  ∈  𝐶 )  →  dom  ( 𝐴  ↾  𝐵 )  ∈  V )  | 
						
						
							| 3 | 
							
								
							 | 
							df-ima | 
							⊢ ( 𝐴  “  𝐵 )  =  ran  ( 𝐴  ↾  𝐵 )  | 
						
						
							| 4 | 
							
								
							 | 
							funimaexg | 
							⊢ ( ( Fun  𝐴  ∧  𝐵  ∈  𝐶 )  →  ( 𝐴  “  𝐵 )  ∈  V )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							eqeltrrid | 
							⊢ ( ( Fun  𝐴  ∧  𝐵  ∈  𝐶 )  →  ran  ( 𝐴  ↾  𝐵 )  ∈  V )  | 
						
						
							| 6 | 
							
								2 5
							 | 
							jca | 
							⊢ ( ( Fun  𝐴  ∧  𝐵  ∈  𝐶 )  →  ( dom  ( 𝐴  ↾  𝐵 )  ∈  V  ∧  ran  ( 𝐴  ↾  𝐵 )  ∈  V ) )  | 
						
						
							| 7 | 
							
								
							 | 
							xpexg | 
							⊢ ( ( dom  ( 𝐴  ↾  𝐵 )  ∈  V  ∧  ran  ( 𝐴  ↾  𝐵 )  ∈  V )  →  ( dom  ( 𝐴  ↾  𝐵 )  ×  ran  ( 𝐴  ↾  𝐵 ) )  ∈  V )  | 
						
						
							| 8 | 
							
								
							 | 
							relres | 
							⊢ Rel  ( 𝐴  ↾  𝐵 )  | 
						
						
							| 9 | 
							
								
							 | 
							relssdmrn | 
							⊢ ( Rel  ( 𝐴  ↾  𝐵 )  →  ( 𝐴  ↾  𝐵 )  ⊆  ( dom  ( 𝐴  ↾  𝐵 )  ×  ran  ( 𝐴  ↾  𝐵 ) ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							ax-mp | 
							⊢ ( 𝐴  ↾  𝐵 )  ⊆  ( dom  ( 𝐴  ↾  𝐵 )  ×  ran  ( 𝐴  ↾  𝐵 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							ssexg | 
							⊢ ( ( ( 𝐴  ↾  𝐵 )  ⊆  ( dom  ( 𝐴  ↾  𝐵 )  ×  ran  ( 𝐴  ↾  𝐵 ) )  ∧  ( dom  ( 𝐴  ↾  𝐵 )  ×  ran  ( 𝐴  ↾  𝐵 ) )  ∈  V )  →  ( 𝐴  ↾  𝐵 )  ∈  V )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							mpan | 
							⊢ ( ( dom  ( 𝐴  ↾  𝐵 )  ×  ran  ( 𝐴  ↾  𝐵 ) )  ∈  V  →  ( 𝐴  ↾  𝐵 )  ∈  V )  | 
						
						
							| 13 | 
							
								6 7 12
							 | 
							3syl | 
							⊢ ( ( Fun  𝐴  ∧  𝐵  ∈  𝐶 )  →  ( 𝐴  ↾  𝐵 )  ∈  V )  |