| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmresexg |  |-  ( B e. C -> dom ( A |` B ) e. _V ) | 
						
							| 2 | 1 | adantl |  |-  ( ( Fun A /\ B e. C ) -> dom ( A |` B ) e. _V ) | 
						
							| 3 |  | df-ima |  |-  ( A " B ) = ran ( A |` B ) | 
						
							| 4 |  | funimaexg |  |-  ( ( Fun A /\ B e. C ) -> ( A " B ) e. _V ) | 
						
							| 5 | 3 4 | eqeltrrid |  |-  ( ( Fun A /\ B e. C ) -> ran ( A |` B ) e. _V ) | 
						
							| 6 | 2 5 | jca |  |-  ( ( Fun A /\ B e. C ) -> ( dom ( A |` B ) e. _V /\ ran ( A |` B ) e. _V ) ) | 
						
							| 7 |  | xpexg |  |-  ( ( dom ( A |` B ) e. _V /\ ran ( A |` B ) e. _V ) -> ( dom ( A |` B ) X. ran ( A |` B ) ) e. _V ) | 
						
							| 8 |  | relres |  |-  Rel ( A |` B ) | 
						
							| 9 |  | relssdmrn |  |-  ( Rel ( A |` B ) -> ( A |` B ) C_ ( dom ( A |` B ) X. ran ( A |` B ) ) ) | 
						
							| 10 | 8 9 | ax-mp |  |-  ( A |` B ) C_ ( dom ( A |` B ) X. ran ( A |` B ) ) | 
						
							| 11 |  | ssexg |  |-  ( ( ( A |` B ) C_ ( dom ( A |` B ) X. ran ( A |` B ) ) /\ ( dom ( A |` B ) X. ran ( A |` B ) ) e. _V ) -> ( A |` B ) e. _V ) | 
						
							| 12 | 10 11 | mpan |  |-  ( ( dom ( A |` B ) X. ran ( A |` B ) ) e. _V -> ( A |` B ) e. _V ) | 
						
							| 13 | 6 7 12 | 3syl |  |-  ( ( Fun A /\ B e. C ) -> ( A |` B ) e. _V ) |