Metamath Proof Explorer


Theorem resqrtval

Description: Real part of the complex square root. (Contributed by RP, 18-May-2024)

Ref Expression
Assertion resqrtval AA=A+A2

Proof

Step Hyp Ref Expression
1 sqrtcval AA=A+A2+iifA<011AA2
2 1 fveq2d AA=A+A2+iifA<011AA2
3 sqrtcvallem5 AA+A2
4 neg1rr 1
5 1re 1
6 4 5 ifcli ifA<011
7 6 a1i AifA<011
8 sqrtcvallem3 AAA2
9 7 8 remulcld AifA<011AA2
10 3 9 crred AA+A2+iifA<011AA2=A+A2
11 2 10 eqtrd AA=A+A2