Metamath Proof Explorer


Theorem ressid2

Description: General behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014)

Ref Expression
Hypotheses ressbas.r R=W𝑠A
ressbas.b B=BaseW
Assertion ressid2 BAWXAYR=W

Proof

Step Hyp Ref Expression
1 ressbas.r R=W𝑠A
2 ressbas.b B=BaseW
3 1 2 ressval WXAYR=ifBAWWsSetBasendxAB
4 iftrue BAifBAWWsSetBasendxAB=W
5 3 4 sylan9eqr BAWXAYR=W
6 5 3impb BAWXAYR=W