Description: Restriction of a class to a singleton. (Contributed by Mario Carneiro, 28-Dec-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | ressn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres | |
|
2 | relxp | |
|
3 | vex | |
|
4 | vex | |
|
5 | 3 4 | elimasn | |
6 | elsni | |
|
7 | 6 | sneqd | |
8 | 7 | imaeq2d | |
9 | 8 | eleq2d | |
10 | 5 9 | bitr3id | |
11 | 10 | pm5.32i | |
12 | 4 | opelresi | |
13 | opelxp | |
|
14 | 11 12 13 | 3bitr4i | |
15 | 1 2 14 | eqrelriiv | |