Metamath Proof Explorer


Theorem ressn

Description: Restriction of a class to a singleton. (Contributed by Mario Carneiro, 28-Dec-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Assertion ressn AB=B×AB

Proof

Step Hyp Ref Expression
1 relres RelAB
2 relxp RelB×AB
3 vex xV
4 vex yV
5 3 4 elimasn yAxxyA
6 elsni xBx=B
7 6 sneqd xBx=B
8 7 imaeq2d xBAx=AB
9 8 eleq2d xByAxyAB
10 5 9 bitr3id xBxyAyAB
11 10 pm5.32i xBxyAxByAB
12 4 opelresi xyABxBxyA
13 opelxp xyB×ABxByAB
14 11 12 13 3bitr4i xyABxyB×AB
15 1 2 14 eqrelriiv AB=B×AB