Metamath Proof Explorer


Theorem cnviin

Description: The converse of an intersection is the intersection of the converse. (Contributed by FL, 15-Oct-2012)

Ref Expression
Assertion cnviin A x A B -1 = x A B -1

Proof

Step Hyp Ref Expression
1 relcnv Rel x A B -1
2 relcnv Rel B -1
3 df-rel Rel B -1 B -1 V × V
4 2 3 mpbi B -1 V × V
5 4 rgenw x A B -1 V × V
6 r19.2z A x A B -1 V × V x A B -1 V × V
7 5 6 mpan2 A x A B -1 V × V
8 iinss x A B -1 V × V x A B -1 V × V
9 7 8 syl A x A B -1 V × V
10 df-rel Rel x A B -1 x A B -1 V × V
11 9 10 sylibr A Rel x A B -1
12 opex b a V
13 eliin b a V b a x A B x A b a B
14 12 13 ax-mp b a x A B x A b a B
15 vex a V
16 vex b V
17 15 16 opelcnv a b x A B -1 b a x A B
18 opex a b V
19 eliin a b V a b x A B -1 x A a b B -1
20 18 19 ax-mp a b x A B -1 x A a b B -1
21 15 16 opelcnv a b B -1 b a B
22 21 ralbii x A a b B -1 x A b a B
23 20 22 bitri a b x A B -1 x A b a B
24 14 17 23 3bitr4i a b x A B -1 a b x A B -1
25 24 eqrelriv Rel x A B -1 Rel x A B -1 x A B -1 = x A B -1
26 1 11 25 sylancr A x A B -1 = x A B -1