Metamath Proof Explorer


Theorem cnviin

Description: The converse of an intersection is the intersection of the converse. (Contributed by FL, 15-Oct-2012)

Ref Expression
Assertion cnviin
|- ( A =/= (/) -> `' |^|_ x e. A B = |^|_ x e. A `' B )

Proof

Step Hyp Ref Expression
1 relcnv
 |-  Rel `' |^|_ x e. A B
2 relcnv
 |-  Rel `' B
3 df-rel
 |-  ( Rel `' B <-> `' B C_ ( _V X. _V ) )
4 2 3 mpbi
 |-  `' B C_ ( _V X. _V )
5 4 rgenw
 |-  A. x e. A `' B C_ ( _V X. _V )
6 r19.2z
 |-  ( ( A =/= (/) /\ A. x e. A `' B C_ ( _V X. _V ) ) -> E. x e. A `' B C_ ( _V X. _V ) )
7 5 6 mpan2
 |-  ( A =/= (/) -> E. x e. A `' B C_ ( _V X. _V ) )
8 iinss
 |-  ( E. x e. A `' B C_ ( _V X. _V ) -> |^|_ x e. A `' B C_ ( _V X. _V ) )
9 7 8 syl
 |-  ( A =/= (/) -> |^|_ x e. A `' B C_ ( _V X. _V ) )
10 df-rel
 |-  ( Rel |^|_ x e. A `' B <-> |^|_ x e. A `' B C_ ( _V X. _V ) )
11 9 10 sylibr
 |-  ( A =/= (/) -> Rel |^|_ x e. A `' B )
12 opex
 |-  <. b , a >. e. _V
13 eliin
 |-  ( <. b , a >. e. _V -> ( <. b , a >. e. |^|_ x e. A B <-> A. x e. A <. b , a >. e. B ) )
14 12 13 ax-mp
 |-  ( <. b , a >. e. |^|_ x e. A B <-> A. x e. A <. b , a >. e. B )
15 vex
 |-  a e. _V
16 vex
 |-  b e. _V
17 15 16 opelcnv
 |-  ( <. a , b >. e. `' |^|_ x e. A B <-> <. b , a >. e. |^|_ x e. A B )
18 opex
 |-  <. a , b >. e. _V
19 eliin
 |-  ( <. a , b >. e. _V -> ( <. a , b >. e. |^|_ x e. A `' B <-> A. x e. A <. a , b >. e. `' B ) )
20 18 19 ax-mp
 |-  ( <. a , b >. e. |^|_ x e. A `' B <-> A. x e. A <. a , b >. e. `' B )
21 15 16 opelcnv
 |-  ( <. a , b >. e. `' B <-> <. b , a >. e. B )
22 21 ralbii
 |-  ( A. x e. A <. a , b >. e. `' B <-> A. x e. A <. b , a >. e. B )
23 20 22 bitri
 |-  ( <. a , b >. e. |^|_ x e. A `' B <-> A. x e. A <. b , a >. e. B )
24 14 17 23 3bitr4i
 |-  ( <. a , b >. e. `' |^|_ x e. A B <-> <. a , b >. e. |^|_ x e. A `' B )
25 24 eqrelriv
 |-  ( ( Rel `' |^|_ x e. A B /\ Rel |^|_ x e. A `' B ) -> `' |^|_ x e. A B = |^|_ x e. A `' B )
26 1 11 25 sylancr
 |-  ( A =/= (/) -> `' |^|_ x e. A B = |^|_ x e. A `' B )