Metamath Proof Explorer


Theorem ressval

Description: Value of structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014)

Ref Expression
Hypotheses ressbas.r R=W𝑠A
ressbas.b B=BaseW
Assertion ressval WXAYR=ifBAWWsSetBasendxAB

Proof

Step Hyp Ref Expression
1 ressbas.r R=W𝑠A
2 ressbas.b B=BaseW
3 elex WXWV
4 elex AYAV
5 simpl WVAVWV
6 ovex WsSetBasendxABV
7 ifcl WVWsSetBasendxABVifBAWWsSetBasendxABV
8 5 6 7 sylancl WVAVifBAWWsSetBasendxABV
9 simpl w=Wa=Aw=W
10 9 fveq2d w=Wa=ABasew=BaseW
11 10 2 eqtr4di w=Wa=ABasew=B
12 simpr w=Wa=Aa=A
13 11 12 sseq12d w=Wa=ABasewaBA
14 12 11 ineq12d w=Wa=AaBasew=AB
15 14 opeq2d w=Wa=ABasendxaBasew=BasendxAB
16 9 15 oveq12d w=Wa=AwsSetBasendxaBasew=WsSetBasendxAB
17 13 9 16 ifbieq12d w=Wa=AifBasewawwsSetBasendxaBasew=ifBAWWsSetBasendxAB
18 df-ress 𝑠=wV,aVifBasewawwsSetBasendxaBasew
19 17 18 ovmpoga WVAVifBAWWsSetBasendxABVW𝑠A=ifBAWWsSetBasendxAB
20 8 19 mpd3an3 WVAVW𝑠A=ifBAWWsSetBasendxAB
21 3 4 20 syl2an WXAYW𝑠A=ifBAWWsSetBasendxAB
22 1 21 eqtrid WXAYR=ifBAWWsSetBasendxAB