Metamath Proof Explorer


Theorem resthaus

Description: A subspace of a Hausdorff topology is Hausdorff. (Contributed by Mario Carneiro, 2-Mar-2015) (Proof shortened by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion resthaus JHausAVJ𝑡AHaus

Proof

Step Hyp Ref Expression
1 haustop JHausJTop
2 cnhaus JHausIAJ:AJ1-1AJIAJJ𝑡ACnJJ𝑡AHaus
3 1 2 resthauslem JHausAVJ𝑡AHaus