| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntop1 |
|
| 2 |
1
|
3ad2ant3 |
|
| 3 |
|
simpl1 |
|
| 4 |
|
simpl3 |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
5 6
|
cnf |
|
| 8 |
4 7
|
syl |
|
| 9 |
|
simprll |
|
| 10 |
8 9
|
ffvelcdmd |
|
| 11 |
|
simprlr |
|
| 12 |
8 11
|
ffvelcdmd |
|
| 13 |
|
simprr |
|
| 14 |
|
simpl2 |
|
| 15 |
8
|
fdmd |
|
| 16 |
|
f1dm |
|
| 17 |
14 16
|
syl |
|
| 18 |
15 17
|
eqtr3d |
|
| 19 |
9 18
|
eleqtrd |
|
| 20 |
11 18
|
eleqtrd |
|
| 21 |
|
f1fveq |
|
| 22 |
14 19 20 21
|
syl12anc |
|
| 23 |
22
|
necon3bid |
|
| 24 |
13 23
|
mpbird |
|
| 25 |
6
|
hausnei |
|
| 26 |
3 10 12 24 25
|
syl13anc |
|
| 27 |
|
simpll3 |
|
| 28 |
|
simprll |
|
| 29 |
|
cnima |
|
| 30 |
27 28 29
|
syl2anc |
|
| 31 |
|
simprlr |
|
| 32 |
|
cnima |
|
| 33 |
27 31 32
|
syl2anc |
|
| 34 |
9
|
adantr |
|
| 35 |
|
simprr1 |
|
| 36 |
8
|
adantr |
|
| 37 |
36
|
ffnd |
|
| 38 |
|
elpreima |
|
| 39 |
37 38
|
syl |
|
| 40 |
34 35 39
|
mpbir2and |
|
| 41 |
11
|
adantr |
|
| 42 |
|
simprr2 |
|
| 43 |
|
elpreima |
|
| 44 |
37 43
|
syl |
|
| 45 |
41 42 44
|
mpbir2and |
|
| 46 |
|
ffun |
|
| 47 |
|
inpreima |
|
| 48 |
36 46 47
|
3syl |
|
| 49 |
|
simprr3 |
|
| 50 |
49
|
imaeq2d |
|
| 51 |
|
ima0 |
|
| 52 |
50 51
|
eqtrdi |
|
| 53 |
48 52
|
eqtr3d |
|
| 54 |
|
eleq2 |
|
| 55 |
|
ineq1 |
|
| 56 |
55
|
eqeq1d |
|
| 57 |
54 56
|
3anbi13d |
|
| 58 |
|
eleq2 |
|
| 59 |
|
ineq2 |
|
| 60 |
59
|
eqeq1d |
|
| 61 |
58 60
|
3anbi23d |
|
| 62 |
57 61
|
rspc2ev |
|
| 63 |
30 33 40 45 53 62
|
syl113anc |
|
| 64 |
63
|
expr |
|
| 65 |
64
|
rexlimdvva |
|
| 66 |
26 65
|
mpd |
|
| 67 |
66
|
expr |
|
| 68 |
67
|
ralrimivva |
|
| 69 |
5
|
ishaus |
|
| 70 |
2 68 69
|
sylanbrc |
|