Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Real subtraction
resubeqsub
Next ⟩
subresre
Metamath Proof Explorer
Ascii
Unicode
Theorem
resubeqsub
Description:
Equivalence between real subtraction and subtraction.
(Contributed by
SN
, 5-May-2024)
Ref
Expression
Assertion
resubeqsub
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
-
ℝ
B
=
A
−
B
Proof
Step
Hyp
Ref
Expression
1
ax-resscn
⊢
ℝ
⊆
ℂ
2
resubeu
⊢
B
∈
ℝ
∧
A
∈
ℝ
→
∃!
x
∈
ℝ
B
+
x
=
A
3
reurex
⊢
∃!
x
∈
ℝ
B
+
x
=
A
→
∃
x
∈
ℝ
B
+
x
=
A
4
2
3
syl
⊢
B
∈
ℝ
∧
A
∈
ℝ
→
∃
x
∈
ℝ
B
+
x
=
A
5
recn
⊢
B
∈
ℝ
→
B
∈
ℂ
6
recn
⊢
A
∈
ℝ
→
A
∈
ℂ
7
sn-subeu
⊢
B
∈
ℂ
∧
A
∈
ℂ
→
∃!
x
∈
ℂ
B
+
x
=
A
8
5
6
7
syl2an
⊢
B
∈
ℝ
∧
A
∈
ℝ
→
∃!
x
∈
ℂ
B
+
x
=
A
9
riotass
⊢
ℝ
⊆
ℂ
∧
∃
x
∈
ℝ
B
+
x
=
A
∧
∃!
x
∈
ℂ
B
+
x
=
A
→
ι
x
∈
ℝ
|
B
+
x
=
A
=
ι
x
∈
ℂ
|
B
+
x
=
A
10
1
4
8
9
mp3an2i
⊢
B
∈
ℝ
∧
A
∈
ℝ
→
ι
x
∈
ℝ
|
B
+
x
=
A
=
ι
x
∈
ℂ
|
B
+
x
=
A
11
10
ancoms
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
ι
x
∈
ℝ
|
B
+
x
=
A
=
ι
x
∈
ℂ
|
B
+
x
=
A
12
resubval
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
-
ℝ
B
=
ι
x
∈
ℝ
|
B
+
x
=
A
13
subval
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
−
B
=
ι
x
∈
ℂ
|
B
+
x
=
A
14
6
5
13
syl2an
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
−
B
=
ι
x
∈
ℂ
|
B
+
x
=
A
15
11
12
14
3eqtr4d
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
-
ℝ
B
=
A
−
B