Metamath Proof Explorer


Theorem resubeqsub

Description: Equivalence between real subtraction and subtraction. (Contributed by SN, 5-May-2024)

Ref Expression
Assertion resubeqsub A B A - B = A B

Proof

Step Hyp Ref Expression
1 ax-resscn
2 resubeu B A ∃! x B + x = A
3 reurex ∃! x B + x = A x B + x = A
4 2 3 syl B A x B + x = A
5 recn B B
6 recn A A
7 sn-subeu B A ∃! x B + x = A
8 5 6 7 syl2an B A ∃! x B + x = A
9 riotass x B + x = A ∃! x B + x = A ι x | B + x = A = ι x | B + x = A
10 1 4 8 9 mp3an2i B A ι x | B + x = A = ι x | B + x = A
11 10 ancoms A B ι x | B + x = A = ι x | B + x = A
12 resubval A B A - B = ι x | B + x = A
13 subval A B A B = ι x | B + x = A
14 6 5 13 syl2an A B A B = ι x | B + x = A
15 11 12 14 3eqtr4d A B A - B = A B