Metamath Proof Explorer


Theorem resubid1

Description: Real number version of subid1 without ax-mulcom . (Contributed by SN, 23-Jan-2024)

Ref Expression
Assertion resubid1 AA-0=A

Proof

Step Hyp Ref Expression
1 readdlid A0+A=A
2 id AA
3 elre0re A0
4 2 3 2 resubaddd AA-0=A0+A=A
5 1 4 mpbird AA-0=A