Metamath Proof Explorer


Theorem resvval

Description: Value of structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018)

Ref Expression
Hypotheses resvsca.r R=W𝑣A
resvsca.f F=ScalarW
resvsca.b B=BaseF
Assertion resvval WXAYR=ifBAWWsSetScalarndxF𝑠A

Proof

Step Hyp Ref Expression
1 resvsca.r R=W𝑣A
2 resvsca.f F=ScalarW
3 resvsca.b B=BaseF
4 elex WXWV
5 elex AYAV
6 ovex WsSetScalarndxF𝑠AV
7 ifcl WVWsSetScalarndxF𝑠AVifBAWWsSetScalarndxF𝑠AV
8 6 7 mpan2 WVifBAWWsSetScalarndxF𝑠AV
9 8 adantr WVAVifBAWWsSetScalarndxF𝑠AV
10 simpl w=Wx=Aw=W
11 10 fveq2d w=Wx=AScalarw=ScalarW
12 11 2 eqtr4di w=Wx=AScalarw=F
13 12 fveq2d w=Wx=ABaseScalarw=BaseF
14 13 3 eqtr4di w=Wx=ABaseScalarw=B
15 simpr w=Wx=Ax=A
16 14 15 sseq12d w=Wx=ABaseScalarwxBA
17 12 15 oveq12d w=Wx=AScalarw𝑠x=F𝑠A
18 17 opeq2d w=Wx=AScalarndxScalarw𝑠x=ScalarndxF𝑠A
19 10 18 oveq12d w=Wx=AwsSetScalarndxScalarw𝑠x=WsSetScalarndxF𝑠A
20 16 10 19 ifbieq12d w=Wx=AifBaseScalarwxwwsSetScalarndxScalarw𝑠x=ifBAWWsSetScalarndxF𝑠A
21 df-resv 𝑣=wV,xVifBaseScalarwxwwsSetScalarndxScalarw𝑠x
22 20 21 ovmpoga WVAVifBAWWsSetScalarndxF𝑠AVW𝑣A=ifBAWWsSetScalarndxF𝑠A
23 9 22 mpd3an3 WVAVW𝑣A=ifBAWWsSetScalarndxF𝑠A
24 4 5 23 syl2an WXAYW𝑣A=ifBAWWsSetScalarndxF𝑠A
25 1 24 eqtrid WXAYR=ifBAWWsSetScalarndxF𝑠A