Metamath Proof Explorer


Theorem resvval2

Description: Value of nontrivial structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018)

Ref Expression
Hypotheses resvsca.r R=W𝑣A
resvsca.f F=ScalarW
resvsca.b B=BaseF
Assertion resvval2 ¬BAWXAYR=WsSetScalarndxF𝑠A

Proof

Step Hyp Ref Expression
1 resvsca.r R=W𝑣A
2 resvsca.f F=ScalarW
3 resvsca.b B=BaseF
4 1 2 3 resvval WXAYR=ifBAWWsSetScalarndxF𝑠A
5 iffalse ¬BAifBAWWsSetScalarndxF𝑠A=WsSetScalarndxF𝑠A
6 4 5 sylan9eqr ¬BAWXAYR=WsSetScalarndxF𝑠A
7 6 3impb ¬BAWXAYR=WsSetScalarndxF𝑠A