Metamath Proof Explorer


Theorem retopbas

Description: A basis for the standard topology on the reals. (Contributed by NM, 6-Feb-2007) (Proof shortened by Mario Carneiro, 17-Jun-2014)

Ref Expression
Assertion retopbas ran.TopBases

Proof

Step Hyp Ref Expression
1 ioof .:*×*𝒫
2 1 fdmi dom.=*×*
3 2 imaeq2i .dom.=.*×*
4 imadmrn .dom.=ran.
5 3 4 eqtr3i .*×*=ran.
6 ssid **
7 6 qtopbaslem .*×*TopBases
8 5 7 eqeltrri ran.TopBases