Metamath Proof Explorer


Theorem reu2

Description: A way to express restricted uniqueness. (Contributed by NM, 22-Nov-1994)

Ref Expression
Assertion reu2 ∃!xAφxAφxAyAφyxφx=y

Proof

Step Hyp Ref Expression
1 nfv yxAφ
2 1 eu2 ∃!xxAφxxAφxyxAφyxxAφx=y
3 df-reu ∃!xAφ∃!xxAφ
4 df-rex xAφxxAφ
5 df-ral xAyAφyxφx=yxxAyAφyxφx=y
6 19.21v yxAyAφyxφx=yxAyyAφyxφx=y
7 nfv xyA
8 nfs1v xyxφ
9 7 8 nfan xyAyxφ
10 eleq1w x=yxAyA
11 sbequ12 x=yφyxφ
12 10 11 anbi12d x=yxAφyAyxφ
13 9 12 sbiev yxxAφyAyxφ
14 13 anbi2i xAφyxxAφxAφyAyxφ
15 an4 xAφyAyxφxAyAφyxφ
16 14 15 bitri xAφyxxAφxAyAφyxφ
17 16 imbi1i xAφyxxAφx=yxAyAφyxφx=y
18 impexp xAyAφyxφx=yxAyAφyxφx=y
19 impexp xAyAφyxφx=yxAyAφyxφx=y
20 17 18 19 3bitri xAφyxxAφx=yxAyAφyxφx=y
21 20 albii yxAφyxxAφx=yyxAyAφyxφx=y
22 df-ral yAφyxφx=yyyAφyxφx=y
23 22 imbi2i xAyAφyxφx=yxAyyAφyxφx=y
24 6 21 23 3bitr4i yxAφyxxAφx=yxAyAφyxφx=y
25 24 albii xyxAφyxxAφx=yxxAyAφyxφx=y
26 5 25 bitr4i xAyAφyxφx=yxyxAφyxxAφx=y
27 4 26 anbi12i xAφxAyAφyxφx=yxxAφxyxAφyxxAφx=y
28 2 3 27 3bitr4i ∃!xAφxAφxAyAφyxφx=y