Description: Deduce equality from restricted uniqueness, deduction version. (Contributed by Thierry Arnoux, 27-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | reu2eqd.1 | |
|
reu2eqd.2 | |
||
reu2eqd.3 | |
||
reu2eqd.4 | |
||
reu2eqd.5 | |
||
reu2eqd.6 | |
||
reu2eqd.7 | |
||
Assertion | reu2eqd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reu2eqd.1 | |
|
2 | reu2eqd.2 | |
|
3 | reu2eqd.3 | |
|
4 | reu2eqd.4 | |
|
5 | reu2eqd.5 | |
|
6 | reu2eqd.6 | |
|
7 | reu2eqd.7 | |
|
8 | reu2 | |
|
9 | 3 8 | sylib | |
10 | 9 | simprd | |
11 | nfv | |
|
12 | nfs1v | |
|
13 | 11 12 | nfan | |
14 | nfv | |
|
15 | 13 14 | nfim | |
16 | nfv | |
|
17 | 1 | anbi1d | |
18 | eqeq1 | |
|
19 | 17 18 | imbi12d | |
20 | nfv | |
|
21 | 20 2 | sbhypf | |
22 | 21 | anbi2d | |
23 | eqeq2 | |
|
24 | 22 23 | imbi12d | |
25 | 15 16 19 24 | rspc2 | |
26 | 4 5 25 | syl2anc | |
27 | 10 26 | mpd | |
28 | 6 7 27 | mp2and | |