Metamath Proof Explorer


Theorem reu2eqd

Description: Deduce equality from restricted uniqueness, deduction version. (Contributed by Thierry Arnoux, 27-Nov-2019)

Ref Expression
Hypotheses reu2eqd.1 x=Bψχ
reu2eqd.2 x=Cψθ
reu2eqd.3 φ∃!xAψ
reu2eqd.4 φBA
reu2eqd.5 φCA
reu2eqd.6 φχ
reu2eqd.7 φθ
Assertion reu2eqd φB=C

Proof

Step Hyp Ref Expression
1 reu2eqd.1 x=Bψχ
2 reu2eqd.2 x=Cψθ
3 reu2eqd.3 φ∃!xAψ
4 reu2eqd.4 φBA
5 reu2eqd.5 φCA
6 reu2eqd.6 φχ
7 reu2eqd.7 φθ
8 reu2 ∃!xAψxAψxAyAψyxψx=y
9 3 8 sylib φxAψxAyAψyxψx=y
10 9 simprd φxAyAψyxψx=y
11 nfv xχ
12 nfs1v xyxψ
13 11 12 nfan xχyxψ
14 nfv xB=y
15 13 14 nfim xχyxψB=y
16 nfv yχθB=C
17 1 anbi1d x=Bψyxψχyxψ
18 eqeq1 x=Bx=yB=y
19 17 18 imbi12d x=Bψyxψx=yχyxψB=y
20 nfv xθ
21 20 2 sbhypf y=Cyxψθ
22 21 anbi2d y=Cχyxψχθ
23 eqeq2 y=CB=yB=C
24 22 23 imbi12d y=CχyxψB=yχθB=C
25 15 16 19 24 rspc2 BACAxAyAψyxψx=yχθB=C
26 4 5 25 syl2anc φxAyAψyxψx=yχθB=C
27 10 26 mpd φχθB=C
28 6 7 27 mp2and φB=C