Metamath Proof Explorer


Theorem reueqbidva

Description: Formula-building rule for restricted existential uniqueness quantifier. Deduction form. General version of reueqbidv . (Contributed by Zhi Wang, 20-Nov-2025)

Ref Expression
Hypotheses reueqbidva.1 φ A = B
reueqbidva.2 φ x A ψ χ
Assertion reueqbidva φ ∃! x A ψ ∃! x B χ

Proof

Step Hyp Ref Expression
1 reueqbidva.1 φ A = B
2 reueqbidva.2 φ x A ψ χ
3 2 reubidva φ ∃! x A ψ ∃! x A χ
4 1 reueqdv φ ∃! x A χ ∃! x B χ
5 3 4 bitrd φ ∃! x A ψ ∃! x B χ