Metamath Proof Explorer


Theorem reuhyp

Description: A theorem useful for eliminating the restricted existential uniqueness hypotheses in reuxfr1 . (Contributed by NM, 15-Nov-2004)

Ref Expression
Hypotheses reuhyp.1 xCBC
reuhyp.2 xCyCx=Ay=B
Assertion reuhyp xC∃!yCx=A

Proof

Step Hyp Ref Expression
1 reuhyp.1 xCBC
2 reuhyp.2 xCyCx=Ay=B
3 tru
4 1 adantl xCBC
5 2 3adant1 xCyCx=Ay=B
6 4 5 reuhypd xC∃!yCx=A
7 3 6 mpan xC∃!yCx=A