Metamath Proof Explorer


Theorem reupick2

Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 15-Dec-2013) (Proof shortened by Mario Carneiro, 19-Nov-2016)

Ref Expression
Assertion reupick2 xAψφxAψ∃!xAφxAφψ

Proof

Step Hyp Ref Expression
1 ancr ψφψφψ
2 1 ralimi xAψφxAψφψ
3 rexim xAψφψxAψxAφψ
4 2 3 syl xAψφxAψxAφψ
5 reupick3 ∃!xAφxAφψxAφψ
6 5 3exp ∃!xAφxAφψxAφψ
7 6 com12 xAφψ∃!xAφxAφψ
8 4 7 syl6 xAψφxAψ∃!xAφxAφψ
9 8 3imp1 xAψφxAψ∃!xAφxAφψ
10 rsp xAψφxAψφ
11 10 3ad2ant1 xAψφxAψ∃!xAφxAψφ
12 11 imp xAψφxAψ∃!xAφxAψφ
13 9 12 impbid xAψφxAψ∃!xAφxAφψ