Metamath Proof Explorer


Theorem reupick3

Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 19-Nov-2016)

Ref Expression
Assertion reupick3 ∃!xAφxAφψxAφψ

Proof

Step Hyp Ref Expression
1 df-reu ∃!xAφ∃!xxAφ
2 df-rex xAφψxxAφψ
3 anass xAφψxAφψ
4 3 exbii xxAφψxxAφψ
5 2 4 bitr4i xAφψxxAφψ
6 eupick ∃!xxAφxxAφψxAφψ
7 1 5 6 syl2anb ∃!xAφxAφψxAφψ
8 7 expd ∃!xAφxAφψxAφψ
9 8 3impia ∃!xAφxAφψxAφψ