Metamath Proof Explorer


Theorem reusngf

Description: Restricted existential uniqueness over a singleton. (Contributed by AV, 3-Apr-2023)

Ref Expression
Hypotheses rexsngf.1 x ψ
rexsngf.2 x = A φ ψ
Assertion reusngf A V ∃! x A φ ψ

Proof

Step Hyp Ref Expression
1 rexsngf.1 x ψ
2 rexsngf.2 x = A φ ψ
3 nfsbc1v x [˙c / x]˙ φ
4 nfsbc1v x [˙w / x]˙ φ
5 sbceq1a x = w φ [˙w / x]˙ φ
6 dfsbcq w = c [˙w / x]˙ φ [˙c / x]˙ φ
7 3 4 5 6 reu8nf ∃! x A φ x A φ c A [˙c / x]˙ φ x = c
8 nfcv _ x A
9 nfv x A = c
10 3 9 nfim x [˙c / x]˙ φ A = c
11 8 10 nfralw x c A [˙c / x]˙ φ A = c
12 1 11 nfan x ψ c A [˙c / x]˙ φ A = c
13 eqeq1 x = A x = c A = c
14 13 imbi2d x = A [˙c / x]˙ φ x = c [˙c / x]˙ φ A = c
15 14 ralbidv x = A c A [˙c / x]˙ φ x = c c A [˙c / x]˙ φ A = c
16 2 15 anbi12d x = A φ c A [˙c / x]˙ φ x = c ψ c A [˙c / x]˙ φ A = c
17 12 16 rexsngf A V x A φ c A [˙c / x]˙ φ x = c ψ c A [˙c / x]˙ φ A = c
18 nfv c [˙A / x]˙ φ A = A
19 dfsbcq c = A [˙c / x]˙ φ [˙A / x]˙ φ
20 eqeq2 c = A A = c A = A
21 19 20 imbi12d c = A [˙c / x]˙ φ A = c [˙A / x]˙ φ A = A
22 18 21 ralsngf A V c A [˙c / x]˙ φ A = c [˙A / x]˙ φ A = A
23 22 anbi2d A V ψ c A [˙c / x]˙ φ A = c ψ [˙A / x]˙ φ A = A
24 eqidd [˙A / x]˙ φ A = A
25 24 biantru ψ ψ [˙A / x]˙ φ A = A
26 23 25 bitr4di A V ψ c A [˙c / x]˙ φ A = c ψ
27 17 26 bitrd A V x A φ c A [˙c / x]˙ φ x = c ψ
28 7 27 bitrid A V ∃! x A φ ψ