Metamath Proof Explorer


Theorem reusv1

Description: Two ways to express single-valuedness of a class expression C ( y ) . (Contributed by NM, 16-Dec-2012) (Proof shortened by Mario Carneiro, 18-Nov-2016) (Proof shortened by JJ, 7-Aug-2021)

Ref Expression
Assertion reusv1 yBφ∃!xAyBφx=CxAyBφx=C

Proof

Step Hyp Ref Expression
1 nfra1 yyBφx=C
2 1 nfmov y*xyBφx=C
3 rsp yBφx=CyBφx=C
4 3 com3l yBφyBφx=Cx=C
5 4 alrimdv yBφxyBφx=Cx=C
6 mo2icl xyBφx=Cx=C*xyBφx=C
7 5 6 syl6 yBφ*xyBφx=C
8 2 7 rexlimi yBφ*xyBφx=C
9 mormo *xyBφx=C*xAyBφx=C
10 reu5 ∃!xAyBφx=CxAyBφx=C*xAyBφx=C
11 10 rbaib *xAyBφx=C∃!xAyBφx=CxAyBφx=C
12 8 9 11 3syl yBφ∃!xAyBφx=CxAyBφx=C