Metamath Proof Explorer


Theorem reximd2a

Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of Margaris p. 90. (Contributed by Thierry Arnoux, 27-Jan-2020)

Ref Expression
Hypotheses reximd2a.1 xφ
reximd2a.2 φxAψxB
reximd2a.3 φxAψχ
reximd2a.4 φxAψ
Assertion reximd2a φxBχ

Proof

Step Hyp Ref Expression
1 reximd2a.1 xφ
2 reximd2a.2 φxAψxB
3 reximd2a.3 φxAψχ
4 reximd2a.4 φxAψ
5 2 3 jca φxAψxBχ
6 5 expl φxAψxBχ
7 1 6 eximd φxxAψxxBχ
8 df-rex xAψxxAψ
9 df-rex xBχxxBχ
10 7 8 9 3imtr4g φxAψxBχ
11 4 10 mpd φxBχ