Metamath Proof Explorer


Theorem rexlimdvaacbv

Description: Unpack a restricted existential antecedent while changing the variable with implicit substitution. The equivalent of this theorem without the bound variable change is rexlimdvaa . (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses rexlimdvaacbv.1 x=yψθ
rexlimdvaacbv.2 φyAθχ
Assertion rexlimdvaacbv φxAψχ

Proof

Step Hyp Ref Expression
1 rexlimdvaacbv.1 x=yψθ
2 rexlimdvaacbv.2 φyAθχ
3 1 cbvrexv xAψyAθ
4 2 rexlimdvaa φyAθχ
5 3 4 biimtrid φxAψχ