Metamath Proof Explorer


Theorem rexprgf

Description: Convert a restricted existential quantification over a pair to a disjunction, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 17-Sep-2011) (Revised by AV, 2-Apr-2023)

Ref Expression
Hypotheses ralprgf.1 xψ
ralprgf.2 xχ
ralprgf.a x=Aφψ
ralprgf.b x=Bφχ
Assertion rexprgf AVBWxABφψχ

Proof

Step Hyp Ref Expression
1 ralprgf.1 xψ
2 ralprgf.2 xχ
3 ralprgf.a x=Aφψ
4 ralprgf.b x=Bφχ
5 df-pr AB=AB
6 5 rexeqi xABφxABφ
7 rexun xABφxAφxBφ
8 6 7 bitri xABφxAφxBφ
9 1 3 rexsngf AVxAφψ
10 9 orbi1d AVxAφxBφψxBφ
11 2 4 rexsngf BWxBφχ
12 11 orbi2d BWψxBφψχ
13 10 12 sylan9bb AVBWxAφxBφψχ
14 8 13 bitrid AVBWxABφψχ