Metamath Proof Explorer


Theorem rexprgf

Description: Convert a restricted existential quantification over a pair to a disjunction, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 17-Sep-2011) (Revised by AV, 2-Apr-2023)

Ref Expression
Hypotheses ralprgf.1 x ψ
ralprgf.2 x χ
ralprgf.a x = A φ ψ
ralprgf.b x = B φ χ
Assertion rexprgf A V B W x A B φ ψ χ

Proof

Step Hyp Ref Expression
1 ralprgf.1 x ψ
2 ralprgf.2 x χ
3 ralprgf.a x = A φ ψ
4 ralprgf.b x = B φ χ
5 df-pr A B = A B
6 5 rexeqi x A B φ x A B φ
7 rexun x A B φ x A φ x B φ
8 6 7 bitri x A B φ x A φ x B φ
9 1 3 rexsngf A V x A φ ψ
10 9 orbi1d A V x A φ x B φ ψ x B φ
11 2 4 rexsngf B W x B φ χ
12 11 orbi2d B W ψ x B φ ψ χ
13 10 12 sylan9bb A V B W x A φ x B φ ψ χ
14 8 13 bitrid A V B W x A B φ ψ χ