Metamath Proof Explorer


Theorem rexrab

Description: Existential quantification over a class abstraction. (Contributed by Jeff Madsen, 17-Jun-2011) (Revised by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypothesis ralab.1 y=xφψ
Assertion rexrab xyA|φχxAψχ

Proof

Step Hyp Ref Expression
1 ralab.1 y=xφψ
2 1 elrab xyA|φxAψ
3 2 anbi1i xyA|φχxAψχ
4 anass xAψχxAψχ
5 3 4 bitri xyA|φχxAψχ
6 5 rexbii2 xyA|φχxAψχ