Metamath Proof Explorer


Theorem rexsng

Description: Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012) Avoid ax-10 , ax-12 . (Revised by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypothesis ralsng.1 x=Aφψ
Assertion rexsng AVxAφψ

Proof

Step Hyp Ref Expression
1 ralsng.1 x=Aφψ
2 1 notbid x=A¬φ¬ψ
3 2 ralsng AVxA¬φ¬ψ
4 dfrex2 xAφ¬xA¬φ
5 bicom1 xA¬φ¬ψ¬ψxA¬φ
6 5 con1bid xA¬φ¬ψ¬xA¬φψ
7 4 6 bitrid xA¬φ¬ψxAφψ
8 3 7 syl AVxAφψ