Metamath Proof Explorer


Theorem rext

Description: A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of TakeutiZaring p. 16. (Contributed by NM, 10-Aug-1993)

Ref Expression
Assertion rext zxzyzx=y

Proof

Step Hyp Ref Expression
1 vsnid xx
2 vsnex xV
3 eleq2 z=xxzxx
4 eleq2 z=xyzyx
5 3 4 imbi12d z=xxzyzxxyx
6 2 5 spcv zxzyzxxyx
7 1 6 mpi zxzyzyx
8 velsn yxy=x
9 equcomi y=xx=y
10 8 9 sylbi yxx=y
11 7 10 syl zxzyzx=y