Metamath Proof Explorer


Theorem sspwb

Description: The powerclass construction preserves and reflects inclusion. Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of TakeutiZaring p. 18. (Contributed by NM, 13-Oct-1996)

Ref Expression
Assertion sspwb AB𝒫A𝒫B

Proof

Step Hyp Ref Expression
1 sspw AB𝒫A𝒫B
2 ssel 𝒫A𝒫Bx𝒫Ax𝒫B
3 vsnex xV
4 3 elpw x𝒫AxA
5 vex xV
6 5 snss xAxA
7 4 6 bitr4i x𝒫AxA
8 3 elpw x𝒫BxB
9 5 snss xBxB
10 8 9 bitr4i x𝒫BxB
11 2 7 10 3imtr3g 𝒫A𝒫BxAxB
12 11 ssrdv 𝒫A𝒫BAB
13 1 12 impbii AB𝒫A𝒫B