Metamath Proof Explorer


Theorem rexuz2

Description: Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005)

Ref Expression
Assertion rexuz2 nMφMnMnφ

Proof

Step Hyp Ref Expression
1 eluz2 nMMnMn
2 df-3an MnMnMnMn
3 1 2 bitri nMMnMn
4 3 anbi1i nMφMnMnφ
5 anass MnMnφMnMnφ
6 an21 MnMnφnMMnφ
7 5 6 bitri MnMnφnMMnφ
8 4 7 bitri nMφnMMnφ
9 8 rexbii2 nMφnMMnφ
10 r19.42v nMMnφMnMnφ
11 9 10 bitri nMφMnMnφ