Metamath Proof Explorer


Theorem rhmresel

Description: An element of the unital ring homomorphisms restricted to a subset of unital rings is a unital ring homomorphism. (Contributed by AV, 10-Mar-2020)

Ref Expression
Hypothesis rhmresel.h φ H = RingHom B × B
Assertion rhmresel φ X B Y B F X H Y F X RingHom Y

Proof

Step Hyp Ref Expression
1 rhmresel.h φ H = RingHom B × B
2 1 adantr φ X B Y B H = RingHom B × B
3 2 oveqd φ X B Y B X H Y = X RingHom B × B Y
4 ovres X B Y B X RingHom B × B Y = X RingHom Y
5 4 adantl φ X B Y B X RingHom B × B Y = X RingHom Y
6 3 5 eqtrd φ X B Y B X H Y = X RingHom Y
7 6 eleq2d φ X B Y B F X H Y F X RingHom Y
8 7 biimp3a φ X B Y B F X H Y F X RingHom Y