Metamath Proof Explorer


Theorem ricdrng

Description: A ring is a division ring if and only if an isomorphic ring is a division ring. (Contributed by SN, 18-Feb-2025)

Ref Expression
Assertion ricdrng R𝑟SRDivRingSDivRing

Proof

Step Hyp Ref Expression
1 ricdrng1 R𝑟SRDivRingSDivRing
2 ricsym R𝑟SS𝑟R
3 ricdrng1 S𝑟RSDivRingRDivRing
4 2 3 sylan R𝑟SSDivRingRDivRing
5 1 4 impbida R𝑟SRDivRingSDivRing