Metamath Proof Explorer


Theorem ricgic

Description: If two rings are (ring) isomorphic, their additive groups are (group) isomorphic. (Contributed by AV, 24-Dec-2019)

Ref Expression
Assertion ricgic R 𝑟 S R 𝑔 S

Proof

Step Hyp Ref Expression
1 brric2 R 𝑟 S R Ring S Ring f f R RingIso S
2 rimgim f R RingIso S f R GrpIso S
3 brgici f R GrpIso S R 𝑔 S
4 2 3 syl f R RingIso S R 𝑔 S
5 4 exlimiv f f R RingIso S R 𝑔 S
6 1 5 simplbiim R 𝑟 S R 𝑔 S