Metamath Proof Explorer


Theorem riinint

Description: Express a relative indexed intersection as an intersection. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Assertion riinint XVkISXXkIS=XrankIS

Proof

Step Hyp Ref Expression
1 ssexg SXXVSV
2 1 expcom XVSXSV
3 2 ralimdv XVkISXkISV
4 3 imp XVkISXkISV
5 dfiin3g kISVkIS=rankIS
6 4 5 syl XVkISXkIS=rankIS
7 6 ineq2d XVkISXXkIS=XrankIS
8 intun XrankIS=XrankIS
9 intsng XVX=X
10 9 adantr XVkISXX=X
11 10 ineq1d XVkISXXrankIS=XrankIS
12 8 11 eqtrid XVkISXXrankIS=XrankIS
13 7 12 eqtr4d XVkISXXkIS=XrankIS