Metamath Proof Explorer


Theorem rimcnv

Description: The converse of a ring isomorphism is a ring isomorphism. (Contributed by SN, 10-Jan-2025)

Ref Expression
Assertion rimcnv FRRingIsoSF-1SRingIsoR

Proof

Step Hyp Ref Expression
1 eqid BaseR=BaseR
2 eqid BaseS=BaseS
3 1 2 rhmf FRRingHomSF:BaseRBaseS
4 frel F:BaseRBaseSRelF
5 dfrel2 RelFF-1-1=F
6 4 5 sylib F:BaseRBaseSF-1-1=F
7 3 6 syl FRRingHomSF-1-1=F
8 id FRRingHomSFRRingHomS
9 7 8 eqeltrd FRRingHomSF-1-1RRingHomS
10 9 anim1ci FRRingHomSF-1SRingHomRF-1SRingHomRF-1-1RRingHomS
11 isrim0 FRRingIsoSFRRingHomSF-1SRingHomR
12 isrim0 F-1SRingIsoRF-1SRingHomRF-1-1RRingHomS
13 10 11 12 3imtr4i FRRingIsoSF-1SRingIsoR