Metamath Proof Explorer


Theorem rimrcl2

Description: Reverse closure of a ring isomorphism. (Contributed by SN, 19-Feb-2025)

Ref Expression
Assertion rimrcl2 FRRingIsoSSRing

Proof

Step Hyp Ref Expression
1 rimrhm FRRingIsoSFRRingHomS
2 rhmrcl2 FRRingHomSSRing
3 1 2 syl FRRingIsoSSRing