Metamath Proof Explorer


Theorem ringcco

Description: Composition in the category of unital rings. (Contributed by AV, 14-Feb-2020) (Revised by AV, 8-Mar-2020)

Ref Expression
Hypotheses ringcco.c C=RingCatU
ringcco.u φUV
ringcco.o ·˙=compC
ringcco.x φXU
ringcco.y φYU
ringcco.z φZU
ringcco.f φF:BaseXBaseY
ringcco.g φG:BaseYBaseZ
Assertion ringcco φGXY·˙ZF=GF

Proof

Step Hyp Ref Expression
1 ringcco.c C=RingCatU
2 ringcco.u φUV
3 ringcco.o ·˙=compC
4 ringcco.x φXU
5 ringcco.y φYU
6 ringcco.z φZU
7 ringcco.f φF:BaseXBaseY
8 ringcco.g φG:BaseYBaseZ
9 1 2 3 ringccofval φ·˙=compExtStrCatU
10 9 oveqd φXY·˙Z=XYcompExtStrCatUZ
11 10 oveqd φGXY·˙ZF=GXYcompExtStrCatUZF
12 eqid ExtStrCatU=ExtStrCatU
13 eqid compExtStrCatU=compExtStrCatU
14 eqid BaseX=BaseX
15 eqid BaseY=BaseY
16 eqid BaseZ=BaseZ
17 12 2 13 4 5 6 14 15 16 7 8 estrcco φGXYcompExtStrCatUZF=GF
18 11 17 eqtrd φGXY·˙ZF=GF