Metamath Proof Explorer


Theorem ringchomfvalALTV

Description: Set of arrows of the category of rings (in a universe). (Contributed by AV, 14-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses ringcbasALTV.c C = RingCatALTV U
ringcbasALTV.b B = Base C
ringcbasALTV.u φ U V
ringchomfvalALTV.h H = Hom C
Assertion ringchomfvalALTV φ H = x B , y B x RingHom y

Proof

Step Hyp Ref Expression
1 ringcbasALTV.c C = RingCatALTV U
2 ringcbasALTV.b B = Base C
3 ringcbasALTV.u φ U V
4 ringchomfvalALTV.h H = Hom C
5 1 2 3 ringcbasALTV φ B = U Ring
6 eqidd φ x B , y B x RingHom y = x B , y B x RingHom y
7 eqidd φ v B × B , z B f 2 nd v RingHom z , g 1 st v RingHom 2 nd v f g = v B × B , z B f 2 nd v RingHom z , g 1 st v RingHom 2 nd v f g
8 1 3 5 6 7 ringcvalALTV φ C = Base ndx B Hom ndx x B , y B x RingHom y comp ndx v B × B , z B f 2 nd v RingHom z , g 1 st v RingHom 2 nd v f g
9 8 fveq2d φ Hom C = Hom Base ndx B Hom ndx x B , y B x RingHom y comp ndx v B × B , z B f 2 nd v RingHom z , g 1 st v RingHom 2 nd v f g
10 4 9 syl5eq φ H = Hom Base ndx B Hom ndx x B , y B x RingHom y comp ndx v B × B , z B f 2 nd v RingHom z , g 1 st v RingHom 2 nd v f g
11 2 fvexi B V
12 11 11 mpoex x B , y B x RingHom y V
13 catstr Base ndx B Hom ndx x B , y B x RingHom y comp ndx v B × B , z B f 2 nd v RingHom z , g 1 st v RingHom 2 nd v f g Struct 1 15
14 homid Hom = Slot Hom ndx
15 snsstp2 Hom ndx x B , y B x RingHom y Base ndx B Hom ndx x B , y B x RingHom y comp ndx v B × B , z B f 2 nd v RingHom z , g 1 st v RingHom 2 nd v f g
16 13 14 15 strfv x B , y B x RingHom y V x B , y B x RingHom y = Hom Base ndx B Hom ndx x B , y B x RingHom y comp ndx v B × B , z B f 2 nd v RingHom z , g 1 st v RingHom 2 nd v f g
17 12 16 mp1i φ x B , y B x RingHom y = Hom Base ndx B Hom ndx x B , y B x RingHom y comp ndx v B × B , z B f 2 nd v RingHom z , g 1 st v RingHom 2 nd v f g
18 10 17 eqtr4d φ H = x B , y B x RingHom y