Metamath Proof Explorer


Theorem ringchomfvalALTV

Description: Set of arrows of the category of rings (in a universe). (Contributed by AV, 14-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses ringcbasALTV.c C=RingCatALTVU
ringcbasALTV.b B=BaseC
ringcbasALTV.u φUV
ringchomfvalALTV.h H=HomC
Assertion ringchomfvalALTV φH=xB,yBxRingHomy

Proof

Step Hyp Ref Expression
1 ringcbasALTV.c C=RingCatALTVU
2 ringcbasALTV.b B=BaseC
3 ringcbasALTV.u φUV
4 ringchomfvalALTV.h H=HomC
5 1 2 3 ringcbasALTV φB=URing
6 eqidd φxB,yBxRingHomy=xB,yBxRingHomy
7 eqidd φvB×B,zBf2ndvRingHomz,g1stvRingHom2ndvfg=vB×B,zBf2ndvRingHomz,g1stvRingHom2ndvfg
8 1 3 5 6 7 ringcvalALTV φC=BasendxBHomndxxB,yBxRingHomycompndxvB×B,zBf2ndvRingHomz,g1stvRingHom2ndvfg
9 8 fveq2d φHomC=HomBasendxBHomndxxB,yBxRingHomycompndxvB×B,zBf2ndvRingHomz,g1stvRingHom2ndvfg
10 4 9 eqtrid φH=HomBasendxBHomndxxB,yBxRingHomycompndxvB×B,zBf2ndvRingHomz,g1stvRingHom2ndvfg
11 2 fvexi BV
12 11 11 mpoex xB,yBxRingHomyV
13 catstr BasendxBHomndxxB,yBxRingHomycompndxvB×B,zBf2ndvRingHomz,g1stvRingHom2ndvfgStruct115
14 homid Hom=SlotHomndx
15 snsstp2 HomndxxB,yBxRingHomyBasendxBHomndxxB,yBxRingHomycompndxvB×B,zBf2ndvRingHomz,g1stvRingHom2ndvfg
16 13 14 15 strfv xB,yBxRingHomyVxB,yBxRingHomy=HomBasendxBHomndxxB,yBxRingHomycompndxvB×B,zBf2ndvRingHomz,g1stvRingHom2ndvfg
17 12 16 mp1i φxB,yBxRingHomy=HomBasendxBHomndxxB,yBxRingHomycompndxvB×B,zBf2ndvRingHomz,g1stvRingHom2ndvfg
18 10 17 eqtr4d φH=xB,yBxRingHomy