Metamath Proof Explorer


Theorem ringcl

Description: Closure of the multiplication operation of a ring. (Contributed by NM, 26-Aug-2011) (Revised by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses ringcl.b B=BaseR
ringcl.t ·˙=R
Assertion ringcl RRingXBYBX·˙YB

Proof

Step Hyp Ref Expression
1 ringcl.b B=BaseR
2 ringcl.t ·˙=R
3 eqid mulGrpR=mulGrpR
4 3 ringmgp RRingmulGrpRMnd
5 3 1 mgpbas B=BasemulGrpR
6 3 2 mgpplusg ·˙=+mulGrpR
7 5 6 mndcl mulGrpRMndXBYBX·˙YB
8 4 7 syl3an1 RRingXBYBX·˙YB