Metamath Proof Explorer


Theorem ringo2times

Description: A ring element plus itself is two times the element. "Two" in an arbitrary unital ring is the sum of the unity element with itself. (Contributed by AV, 24-Aug-2021) Variant of o2timesd for rings. (Revised by AV, 5-Feb-2025)

Ref Expression
Hypotheses ringo2times.b B=BaseR
ringo2times.p +˙=+R
ringo2times.t ·˙=R
ringo2times.u 1˙=1R
Assertion ringo2times RRingABA+˙A=1˙+˙1˙·˙A

Proof

Step Hyp Ref Expression
1 ringo2times.b B=BaseR
2 ringo2times.p +˙=+R
3 ringo2times.t ·˙=R
4 ringo2times.u 1˙=1R
5 1 2 3 ringdir RRingxByBzBx+˙y·˙z=x·˙z+˙y·˙z
6 5 ralrimivvva RRingxByBzBx+˙y·˙z=x·˙z+˙y·˙z
7 6 adantr RRingABxByBzBx+˙y·˙z=x·˙z+˙y·˙z
8 1 4 ringidcl RRing1˙B
9 8 adantr RRingAB1˙B
10 1 3 4 ringlidm RRingxB1˙·˙x=x
11 10 ralrimiva RRingxB1˙·˙x=x
12 11 adantr RRingABxB1˙·˙x=x
13 simpr RRingABAB
14 7 9 12 13 o2timesd RRingABA+˙A=1˙+˙1˙·˙A