Metamath Proof Explorer


Theorem riotarab

Description: Restricted iota of a restricted abstraction. (Contributed by Scott Fenton, 8-Aug-2024)

Ref Expression
Hypothesis riotarab.1 x=yφψ
Assertion riotarab ιxyA|ψ|χ=ιxA|φχ

Proof

Step Hyp Ref Expression
1 riotarab.1 x=yφψ
2 1 bicomd x=yψφ
3 2 equcoms y=xψφ
4 3 elrab xyA|ψxAφ
5 4 anbi1i xyA|ψχxAφχ
6 anass xAφχxAφχ
7 5 6 bitri xyA|ψχxAφχ
8 7 iotabii ιx|xyA|ψχ=ιx|xAφχ
9 df-riota ιxyA|ψ|χ=ιx|xyA|ψχ
10 df-riota ιxA|φχ=ιx|xAφχ
11 8 9 10 3eqtr4i ιxyA|ψ|χ=ιxA|φχ