Metamath Proof Explorer


Theorem rlm0

Description: Zero vector in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Assertion rlm0 0R=0ringLModR

Proof

Step Hyp Ref Expression
1 rlmval ringLModR=subringAlgRBaseR
2 1 a1i ringLModR=subringAlgRBaseR
3 eqidd 0R=0R
4 ssidd BaseRBaseR
5 2 3 4 sralmod0 0R=0ringLModR
6 5 mptru 0R=0ringLModR