Metamath Proof Explorer


Theorem rlmsca

Description: Scalars in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014)

Ref Expression
Assertion rlmsca RXR=ScalarringLModR

Proof

Step Hyp Ref Expression
1 eqid BaseR=BaseR
2 1 ressid RXR𝑠BaseR=R
3 rlmval ringLModR=subringAlgRBaseR
4 3 a1i RXringLModR=subringAlgRBaseR
5 ssidd RXBaseRBaseR
6 4 5 srasca RXR𝑠BaseR=ScalarringLModR
7 2 6 eqtr3d RXR=ScalarringLModR