Metamath Proof Explorer


Theorem rlmscaf

Description: Functionalized scalar multiplication in the ring module. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Assertion rlmscaf +𝑓mulGrpR=𝑠𝑓ringLModR

Proof

Step Hyp Ref Expression
1 eqid mulGrpR=mulGrpR
2 eqid BaseR=BaseR
3 1 2 mgpbas BaseR=BasemulGrpR
4 eqid R=R
5 1 4 mgpplusg R=+mulGrpR
6 eqid +𝑓mulGrpR=+𝑓mulGrpR
7 3 5 6 plusffval +𝑓mulGrpR=xBaseR,yBaseRxRy
8 rlmbas BaseR=BaseringLModR
9 rlmsca2 IR=ScalarringLModR
10 baseid Base=SlotBasendx
11 10 2 strfvi BaseR=BaseIR
12 eqid 𝑠𝑓ringLModR=𝑠𝑓ringLModR
13 rlmvsca R=ringLModR
14 8 9 11 12 13 scaffval 𝑠𝑓ringLModR=xBaseR,yBaseRxRy
15 7 14 eqtr4i +𝑓mulGrpR=𝑠𝑓ringLModR