Metamath Proof Explorer


Theorem rmob2

Description: Consequence of "restricted at most one". (Contributed by Thierry Arnoux, 9-Dec-2019)

Ref Expression
Hypotheses rmoi2.1 x=Bψχ
rmoi2.2 φBA
rmoi2.3 φ*xAψ
rmoi2.4 φxA
rmoi2.5 φψ
Assertion rmob2 φx=Bχ

Proof

Step Hyp Ref Expression
1 rmoi2.1 x=Bψχ
2 rmoi2.2 φBA
3 rmoi2.3 φ*xAψ
4 rmoi2.4 φxA
5 rmoi2.5 φψ
6 df-rmo *xAψ*xxAψ
7 3 6 sylib φ*xxAψ
8 eleq1 x=BxABA
9 8 1 anbi12d x=BxAψBAχ
10 9 mob2 BA*xxAψxAψx=BBAχ
11 2 7 4 5 10 syl112anc φx=BBAχ
12 2 11 mpbirand φx=Bχ