Metamath Proof Explorer


Theorem rng1nnzr

Description: The (smallest) structure representing a zero ring is not a nonzero ring. (Contributed by AV, 29-Apr-2019)

Ref Expression
Hypothesis rng1nnzr.m M=BasendxZ+ndxZZZndxZZZ
Assertion rng1nnzr ZVMNzRing

Proof

Step Hyp Ref Expression
1 rng1nnzr.m M=BasendxZ+ndxZZZndxZZZ
2 snex ZV
3 1 rngbase ZVZ=BaseM
4 2 3 mp1i ZVZ=BaseM
5 4 eqcomd ZVBaseM=Z
6 5 fveq2d ZVBaseM=Z
7 hashsng ZVZ=1
8 6 7 eqtrd ZVBaseM=1
9 1 ring1 ZVMRing
10 0ringnnzr MRingBaseM=1¬MNzRing
11 9 10 syl ZVBaseM=1¬MNzRing
12 8 11 mpbid ZV¬MNzRing
13 df-nel MNzRing¬MNzRing
14 12 13 sylibr ZVMNzRing