Metamath Proof Explorer


Theorem rng2idlsubgsubrng

Description: A two-sided ideal of a non-unital ring which is a subgroup of the ring is a subring of the ring. (Contributed by AV, 11-Mar-2025)

Ref Expression
Hypotheses rng2idlsubgsubrng.r φRRng
rng2idlsubgsubrng.i φI2IdealR
rng2idlsubgsubrng.u φISubGrpR
Assertion rng2idlsubgsubrng Could not format assertion : No typesetting found for |- ( ph -> I e. ( SubRng ` R ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 rng2idlsubgsubrng.r φRRng
2 rng2idlsubgsubrng.i φI2IdealR
3 rng2idlsubgsubrng.u φISubGrpR
4 eqid LIdealR=LIdealR
5 eqid opprR=opprR
6 eqid LIdealopprR=LIdealopprR
7 eqid 2IdealR=2IdealR
8 4 5 6 7 2idlelb I2IdealRILIdealRILIdealopprR
9 8 simplbi I2IdealRILIdealR
10 2 9 syl φILIdealR
11 eqid R𝑠I=R𝑠I
12 4 11 rnglidlrng RRngILIdealRISubGrpRR𝑠IRng
13 1 10 3 12 syl3anc φR𝑠IRng
14 1 2 13 rng2idlsubrng Could not format ( ph -> I e. ( SubRng ` R ) ) : No typesetting found for |- ( ph -> I e. ( SubRng ` R ) ) with typecode |-