Metamath Proof Explorer


Theorem rngcl

Description: Closure of the multiplication operation of a non-unital ring. (Contributed by AV, 17-Apr-2020)

Ref Expression
Hypotheses rngcl.b B=BaseR
rngcl.t ·˙=R
Assertion rngcl RRngXBYBX·˙YB

Proof

Step Hyp Ref Expression
1 rngcl.b B=BaseR
2 rngcl.t ·˙=R
3 eqid mulGrpR=mulGrpR
4 3 rngmgp Could not format ( R e. Rng -> ( mulGrp ` R ) e. Smgrp ) : No typesetting found for |- ( R e. Rng -> ( mulGrp ` R ) e. Smgrp ) with typecode |-
5 sgrpmgm Could not format ( ( mulGrp ` R ) e. Smgrp -> ( mulGrp ` R ) e. Mgm ) : No typesetting found for |- ( ( mulGrp ` R ) e. Smgrp -> ( mulGrp ` R ) e. Mgm ) with typecode |-
6 4 5 syl RRngmulGrpRMgm
7 3 1 mgpbas B=BasemulGrpR
8 3 2 mgpplusg ·˙=+mulGrpR
9 7 8 mgmcl mulGrpRMgmXBYBX·˙YB
10 6 9 syl3an1 RRngXBYBX·˙YB